
深海に生息し、発光能力がある「八放サンゴ類」の一種。生物発光の起源は約5億4000万年前にさかのぼる可能性が高いことが分かった(米海洋大気局=NOAA提

ウミエラなどの祖先で獲得

生物発光は外部から紫外線などを 受けて光る蛍光とは異なり、発光物 質(ルシフェリン)と発光酵素(ル シフェラーゼ)による化学反応によ シフェラーゼ)による化学反応によ を も場合があるが、発光酵素の遺伝子 な場合があるが、発光酵素の遺伝子

になると期待される。

光が進化した謎を解明する手掛かり物が出現した時代で、研究成果は発

国際チーム進化解明の手掛かり

ていたと推定した。カンブリア紀初

別は目を持つ動物を含め、多様な生

4000万年前に発光能力を獲得し

放サンゴ類」の共通祖先が、約5億

物の中でも原始的な刺胞動物の「豆

ウミエラやウミサボテンなど、動ムが英王立協会紀要に発表した。

発光する種は深海魚なども多い。 発光する種は深海魚なども多い。 発光能力が発達したとの見方を示し が、国際研究チームは暗い深海で など、さまざまな役割があると考 など、さまざまなども多い。 DNA解析で進化系統、化石で年代 が分かれば、起源を推定できる。 年前の白亜紀半ばに出現した際は深 年前の白亜紀半ばに出現した際は深 たと、中部大と長浜バイオ大(滋賀 たと、中部大と長浜バイオ大(滋賀 たと、中部大と長浜バイオ大(滋賀 県長浜市)、鹿児島大の研究チームが などの「貝形虫」と呼ばれる小さな 甲殻類は約2億6700万年前のペ ルム紀に発光能力を獲得していた と、米カリフォルニア大などの研究チームが22年に発表している。

が分かった。米スミソニアン自然中

時物館や名古屋大などの国際研究チ

初期にさかのぼる可能性が高いこと5億4000万年前のカンブリア紀

生物発光」の起源は、遅くとも約